VGA

Video Graphics Array (VGA) refers specifically to the display hardware first introduced with the IBM PS/2 line of computers in 1987, but through its widespread adoption has also come to mean either an analog computer display standard, the 15-pin D-subminiature VGA connector or the 640×480 resolution itself. While this resolution has been superseded in the personal computer market, it is becoming a popular resolution on mobile devices.

Video Graphics Array (VGA) was the last graphical standard introduced by IBM that the majority of PC clone manufacturers conformed to, making it today (as of 2009) the lowest common denominator that all PC graphics hardware supports, before a device-specific driver is loaded into the computer. For example, the MS-Windows splash screen appears while the machine is still operating in VGA mode, which is the reason that this screen always appears in reduced resolution and color depth.

VGA was officially superseded by IBM's XGA standard, but in reality it was superseded by numerous slightly different extensions to VGA made by clone manufacturers that came to be known collectively as "Super VGA".

VGA is referred to as an "array" instead of an "adapter" because it was implemented from the start as a single chip (an ASIC), replacing the Motorola 6845 and dozens of discrete logic chips that covered the full-length ISA boards of the MDA, CGA, and EGA. Its single-chip implementation also allowed the VGA to be placed directly on a PC's motherboard with a minimum of difficulty (it only required video memory, timing crystals and an external RAMDAC), and the first IBM PS/2 models were equipped with VGA on the motherboard. (Contrast this with all of the "family one" IBM PC desktop models—the PC [machine-type 5150], PC/XT [5160], and PC AT [5170]—which required a display adapter installed in a slot in order to connect a monitor.)

The VGA color system is backwards compatible with the EGA and CGA adapters, and adds another level of configuration on top of that. CGA was able to display up to 16 colors, and EGA extended this by allowing each of the 16 colors to be chosen from a 64-color palette (these 64 colors are made up of two bits each for red, green and blue: two bits × three channels = six bits = 64 different values). VGA further extends this scheme by increasing the EGA palette from 64 entries to 256 entries. Two more blocks of 64 colors with progressively darker shades were added, along with 8 "blank" entries that were set to black.[10][dubious – discuss]

In addition to the extended palette, each of the 256 entries could be assigned an arbitrary color value through the VGA DAC. The EGA BIOS only allowed 2 bits per channel to represent each entry, while VGA allowed 6 bits to represent the intensity of each of the three primaries (red, blue and green). This provided a total of 64 different intensity levels for red, green and blue, resulting in 262,144 possible colors, any 256 of which could be assigned to the palette (and in turn out of those 256, any 16 of them could be displayed in CGA video modes).

This method allowed new VGA colors to be used in EGA and CGA graphics modes, providing one remembered how the different palette systems are laid together. To set the text color to very dark red in text mode, for instance, it will need to be set to one of the CGA colors (for example, the default color, #7: light grey.) This color then maps to one in the EGA palette — in the case of CGA color 7, it maps to EGA palette entry 42. The VGA DAC must then be configured to change color 42 to dark red, and then immediately anything displayed on the screen in light-grey (CGA color 7) will become dark red. This feature was often used in 256-color VGA DOS games when they first loaded, by smoothly fading out the text screen to black. (The game Descent, from 1995, is an example.)

While CGA and EGA-compatible modes only allowed 16 colors to be displayed at any one time, other VGA modes, such as the widely used mode 13h, allowed all 256 palette entries to be displayed on the screen at the same time, and so in these modes any 256 colors could be shown out of the 262,144 colors available.